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ABSTRACT: Software fault prediction is a critical aspect of    software engineering aimed at improving software 

quality and reliability. However, it faces significant challenges, particularly the class imbalance issue in fault data and 

the necessity for robust predictive models that generalize effectively across different projects. This research explores 

these challenges through a detailed cross-project analysis and evaluates their impact on software fault prediction. Our 

study addresses three primary research questions. First, we investigate the problem of class imbalance, where the 

number of faulty instances is significantly lower than non-faulty ones, making accurate prediction difficult. By 

conducting extensive experiments using various classifiers on datasets from diverse software projects, we highlight 

how class imbalance affects model performance and the importance of mitigating it. Second, we assess the reliability of 

cross-project prediction to understand how well models trained on one project can predict faults in another. Our 

findings show that models perform better when the training and target datasets share similar characteristics. Third, we 

analyze the effect of increasing the number of training samples from different projects and demonstrate that doing so 

enhances prediction accuracy and generalization. We further compare classifier performance using standard evaluation 

metrics such as accuracy, precision, recall, and F1 score. Our findings emphasize the need to consider both class 

imbalance and model generalization in developing effective and dependable software fault prediction models. This 

research contributes valuable insights and guidance for constructing reliable predictive models capable of operating 

across different software projects. 

 

I. INTRODUCTION 

 

These days in software engineering, making sure our software is high-quality and reliable is more important than ever. 

As software systems grow increasingly complex and integral to critical applications, identifying and correcting faults 

before deployment becomes a vital component of the software development life cycle. One of the most effective 

techniques for improving software quality is Software Fault Prediction (SFP), which aims to detect modules or 

components that are likely to be defective so that testing and maintenance efforts can be prioritized accordingly. 

 

Traditional fault prediction methods generally rely on within-project data, where historical data from a single software 

project is used to train predictive models. While these approaches have shown promise, they suffer from a key 

limitation  class imbalance. In most datasets, there are far more non-faulty (majority) instances than faulty (minority) 

ones. 

 

This skew can lead to biased models that underperform when identifying the minority (fault-prone) class, reducing the 

overall reliability of predictions. Another critical challenge lies in the generalizability of prediction models. In real-

world scenarios, especially in new or evolving software projects, sufficient historical data for training may not be 

available. This limitation has led to the exploration of Cross-Project Defect Prediction (CPDP), where models are 

trained on data from other software projects. However, CPDP introduces its own set of challenges, including variations 

in feature distributions, project characteristics, and metrics, which can negatively impact model performance if not 

carefully handled. 
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This project aims to address both of these challenges through a structured investigation into the impact of class 

imbalance and model generalization in cross-project settings. We apply a range of machine learning classifiers, conduct 

parameter tuning for optimization, and evaluate performance across multiple open-source datasets using standard 

metrics such as accuracy, precision, recall, and F1 score. By leveraging data preprocessing techniques, resampling 

strategies (e.g., SMOTE, ADASYN), and cross-validation, the proposed system aims to build robust models that can 

effectively generalize across projects. Through this research, we contribute valuable insights into improving the 

performance of fault prediction systems in real-world software environments, where data availability and quality may 

vary significantly across projects. 

 

II. LITERATURE SYRVEY 

 

Mende and Giger explored the effectiveness of software metrics in predicting faulty classes. Using industrial data, they 

analyzed metric correlations with defects and found that specific object-oriented metrics, such as complexity and 

coupling, are strong predictors. The study concluded that metric-based prediction models can significantly aid early 

defect detection. 

 

Jureczko and Madeyski studied how clustering software projects could improve defect prediction. They demonstrated 

that grouping similar projects based on software metrics improves the accuracy of cross-project predictions. Their work 

highlights the potential of cluster-based modeling in scenarios lacking historical defect data. 

 

Sun et al. proposed a cost-sensitive boosting algorithm to address class imbalance in classification problems. Their 

method assigns higher weights to minority class instances, improving the detection rate for rare but critical cases such 

as software defects. Experiments showed superior performance compared to standard boosting techniques. 

 

Chawla et al. They introduced SMOTE, a popular oversampling method used to handle imbalanced datasets. 

 

By generating synthetic minority class examples, SMOTE enhances classifier learning, leading to improved recall in 

defect prediction tasks. This method became a key approach for dealing with skewed software defect datasets. 

 

He and Wu applied Radial Basis Function (RBF) networks to imbalanced defect datasets. They integrated sampling 

strategies with RBF learning to improve predictive accuracy. The results indicated that this hybrid approach 

outperforms traditional methods in detecting faulty modules. 

 

Kaliraj and Jaiswal utilized Generative Adversarial Networks (GANs) to synthesize realistic minority class data for 

defect prediction. This approach mitigates imbalance while preserving data distribution, leading to significant 

improvements in precision and recall for fault-prone modules. 

 

Manchala and Bisi (2022) proposed a diversity-based ensemble method that combines multiple classifiers to address 

imbalance in software defect datasets. Their approach emphasizes varied learning perspectives, resulting in robust and 

generalizable predictions. 

 

Yang et al. applied transfer learning techniques to enable defect prediction across different organizations. By reusing 

knowledge from source projects, they achieved high accuracy in target projects with limited or no historical defect data. 

Lam et al. They combined deep learning with information retrieval to pinpoint buggy files from bug reports. 

 

Their model learns semantic relationships between bug descriptions and source code, outperforming traditional IR-

based bug localization methods. 

 

Xia et al. They came up with HYDRA, a learning framework that helps predict defects across multiple large software 

projects. HYDRA integrates multiple base models to capture diverse defect patterns, delivering. 

 

EXISTING SYSTEM 

Traditional Software Fault Prediction (SFP) systems primarily focus on Within-Project Defect Prediction (WPDP), 

where machine learning models are trained and tested using data from the same software project. These models utilize 

software metrics such as code complexity, churn rate, and historical fault data to identify potentially faulty modules. 
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Some of the most common machine learning techniques are Support Vector Machines (SVM), Decision Trees, Naïve 

Bayes, Neural Networks, and Random Forests. Over time, researchers have made many improvements to boost the 

performance of WPDP. 

 

For instance, techniques like Bayesian Regularization, cost-sensitive learning, and resampling methods such as 

SMOTE and ADASYN have been employed to handle class imbalance in datasets. Advanced strategies like Generative 

Adversarial Networks (GANs), ensemble methods, and feature selection using Genetic Algorithms have also been 

explored to improve prediction accuracy. 

 

However, despite these advancements, most traditional approaches still struggle when applied to Cross-Project Defect 

Prediction (CPDP) scenarios. Models trained on one project often fail to generalize well when used on a different 

project due to differences in coding practices, metrics, and data distributions. This reduces the effectiveness of such 

models in real-world applications where historical fault data may be limited or unavailable for new projects. 

 

PROPSED SYSTEM 

The proposed system addresses the critical issues of class imbalance and poor generalization in software fault 

prediction by leveraging cross-project analysis and optimized machine learning models. Unlike traditional within-

project models, our system trains classifiers using data from multiple source projects and evaluates their ability to 

predict faults in unseen target projects. This approach enables effective Cross-Project Defect Prediction (CPDP), which 

is particularly useful when the target project lacks sufficient historical data. To boost model performance, we use data 

preprocessing, feature normalization, and class balancing methods like SMOTE and ADASYN. 

 

We also perform extensive hyperparameter tuning using grid search with cross-validation, ensuring that each classifier 

operates under optimal conditions. This enhances the robustness and accuracy of predictions. A diverse set of widely 

used classifiers such as Random Forest, Decision Tree, Logistic Regression, K-Nearest Neighbors (KNN), and Support 

Vector Machines (SVM) is employed to ensure broad methodological coverage. The performance of these models is 

evaluated across multiple datasets using metrics such as Accuracy, Precision, Recall, and F1 Score, offering a 

comprehensive comparison. The system is implemented using Python and Django-ORM with a web interface built in 

HTML, CSS, and JavaScript. It supports user authentication, file upload of project metrics, and displays prediction 

results with performance analytics, providing a user-friendly platform for practical use. 

 

III. SYSTEM ARCHITECTURE 

 

The proposed system architecture for detecting application defects usi=ng inter-project comparison is designed around 

a multi-layered workflow that integrates data collection, preprocessing, feature analysis, and defect prediction. At the 

input layer, defect datasets from multiple software projects are gathered, ensuring coverage across diverse domains to 

address category inequality. These datasets pass through a preprocessing module where missing values are handled, 

attributes are normalized, and categorical inconsistencies between projects are aligned. The core analytical engine 

applies feature mapping and similarity measurement algorithms to establish comparable metrics across different 

projects.  

 

A category-balancing module then mitigates inequality by resampling or reweighting underrepresented defect classes, 

enabling more uniform model training. The prediction module employs machine learning classifiers—such as Random 

Forests, SVMs, or deep learning models—to detect potential defects based on cross-project knowledge.  

 

Finally, the system includes a feedback and evaluation layer where prediction results are validated against actual defect 

data, and performance metrics (precision, recall, F-measure) are computed. This architecture allows continuous 

refinement of the model by iteratively incorporating new inter-project data, thus enhancing the robustness and 

generalizability of defect detection despite variations in category  

Distribution 
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.  

 

Fig 3.1 System Architecture 

 

IV. METHODOLOGY 

 

Data Collection and Preprocessing: Software defect datasets are gathered from multiple open-source repositories. 

Data is cleaned, missing values are handled, and features are normalized to maintain consistency across projects. 

 

Handling Class Imbalance: Techniques like SMOTE and ADASYN are applied to generate synthetic minority 

samples, improving fault detection for imbalanced datasets. 

 

Model Training and Optimization: Machine learning algorithms such as Random Forest, Decision Tree, Logistic 

Regression, and KNN are trained with hyperparameter tuning to enhance performance. 

 

Cross-Project Evaluation: Models are tested in cross-project settings, where data from one project is used to predict 

faults in another, ensuring generalization. 

 

Performance Assessment: We use metrics like precision, recall, F1 score, and accuracy to evaluate how well the 

models predict. 

 

V. DESIGN AND IMPLEMENTATION 

 

Remote User: The Remote User module is designed for end-users who access the system to interact with its predictive 

capabilities. It includes the User Profile section, where personal and account details can be managed, and the Prediction 

Page, where users can upload or input relevant software project data to receive fault prediction results. The interface is 

user-friendly, enabling non-technical users to easily access predictions without needing deep knowledge of the 

underlying algorithms. 

 

Service Provider: The Service Provider module is responsible for managing the system’s backend operations and 

administrative controls. It has access to All Users data for monitoring and support, as well as All Prediction Results to 

track system performance. Additionally, the service provider can view Graphs that visually represent fault prediction 

statistics and trends. This module also offers the ability to Download the Prediction Dataset, enabling further offline 

analysis or model retraining to improve accuracy. 

 

VI. OUTCOME OF RESEARCH 

 

The research delivers a robust cross-project software fault prediction model capable of handling class imbalance 

effectively. It improves fault detection accuracy, enhances model generalization across diverse projects, and provides a 

practical web-based system for real-time defect prediction and analysis. 
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The research on Detecting Application Defects Using Inter-Project Comparison with a focus on system extension for 

category inequality demonstrates that cross-project data analysis can significantly enhance defect prediction accuracy, 

especially in cases where target project data is limited or imbalanced. By leveraging historical defect data from similar 

projects and applying advanced categorization methods, the extended system effectively mitigates bias caused by 

unequal defect category distributions. The study’s findings indicate that integrating inter-project metrics, normalization 

strategies, and inequality-aware algorithms not only improves defect detection rates but also reduces false positives 

compared to traditional single-project models. This approach offers practical value in large-scale software development, 

where varying project domains and data scarcity often hinder reliable defect identification. Ultimately, the work 

contributes to more adaptive, transferable, and fair defect prediction frameworks, paving the way for improved quality 

assurance processes across diverse application landscapes. 

 

VII. RESULT AND DISCUSSION 

 

The proposed system successfully predicts software faults with higher accuracy and better generalization across 

different projects compared to traditional models. It effectively handles imbalanced datasets, producing improved 

precision, recall, and F1 scores, and offers an accessible platform for real-time prediction and result visualization. 

 

The developed system successfully analyzes software module data and predicts whether a fault is present or not. Based 

on the trained machine learning models and cross-project analysis, the system outputs either "Fault Found" or "No 

Fault Found" for each input instance. This enables developers to identify defective modules early, prioritize testing 

efforts, and improve overall software reliability. 

 

 
 

Fig 3.1 Model Accuracy Result 

 

VII. CONCLUSION 

 

This research demonstrates that addressing class imbalance and enhancing model generalization significantly improves 

the accuracy and reliability of software fault prediction in cross-project scenarios. The developed system not only 

achieves superior predictive performance but also provides an intuitive platform for practical use, aiding developers 

and project managers in proactively identifying and mitigating potential software defects. 

 

Future enhancements could involve integrating deep learning models to further boost prediction accuracy, incorporating 

more diverse cross-project datasets for broader applicability, and implementing automated model selection to adapt to 

varying project characteristics. Additionally, expanding the system to support continuous learning from newly collected 

data can ensure sustained performance improvements over time. 
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